
PTXdist supports integrating your own sources into the build. It handles the correct
toolchain to be used, handles dependencies to other packages your sources are re-
quire and also selecting correct pathes for include files and libraries. This application
note describes the steps to do to make PTXdist work with your own sources.

Working with Sources

PTXdist Application Note

Integration

PTXdist supports the building and maintaining of root filesystem creation. But everything is based on
ready to use source file packets, mostly from the internet.
But also most projects require additional software development. This part describes a way to integrate
our ”work in progress” source files into PTXdist’s build scheme, so we can test, debug and use them as
any other packet on our target.

Steps to do:

1. creating a directory where our development should take place.

2. creating a development makefile in this directory that controls building the executable files or any
other data from the sources we will later add.

3. creating an additional rule file in our own PTXdist project that conforms to the building rules of
PTXdist but also controls our development makefiles and the files it generates.

4. activating the new rule file

The first step is simple. We can locating this directory anywhere we want or must (due to IT contraints
or the using of software revision control systems).

The second step depends on our development environment. Many integrated development environ-
ments (IDE) currently in use supporting Makefile managing. This is especially valid for KDevelop and
Eclipse but also for many others. So this development makefile will be autogenerated by the IDE. There
are no constraints about this development makefile, because PTXdist’s rule file we will add in the next
step will act as an agent to handle all particularities of the development makefile.

But the simplest way to get a development makefile is to write it by our own.

#
Simple development makefile
#
.PHONY: all install clean

all: my_executable

CFLAGS=-Werror -Wall

my_executable: my_source.c

clean:
rm -f my_executable

install:

#
end of development makefile
#

Note: You can find this development makefile template in Makefile in PTXdist’s

<ptxdist-installdir>/rules/templates/kconfig/

directory.

This works due to make has many built-in rules how to convert various source files into an executable
files. We should keep our development makefile as simple as possible and we should also keep all
internal make rules. This simplifies overwriting some rules and other macros from PTXdist’s build
environment to support a seamless cross development.

2

The more we add our own build rules the more PTXdist’s rules file (maybe) must convert between both
”worlds”. It is sometimes tricky to build sources native to test on the host first and cross to run it on the
target later. PTXdist supports such ”tricks” and the simpler our development makefile is the more we
can make use of these tricks.
The main goal for our source files should be to write code that runs unmodified on any architecture and
host environment (and avoid any #ifdef...#endif hell as possible).

Creating an additional rule file for PTXdist’s build environment into our active project is divided into
two parts. First we create this rule file itself from a template into project’s rules/ directory:

$ cd rules
$ ptxdist newpacket source

ptxdist: creating a new packet from template-src:

ptxdist: enter packet name.......: my-packet
ptxdist: enter version number....:
ptxdist: enter URL of basedir....: file://home/jbe
ptxdist: enter packet author.....:
ptxdist: enter suffix............:

Note: In this case the prefix file:// is required to tell PTXdist’s download mechanism, this packet
don’t need to be downloaded, because its already at its place.

Note: Don’t use other characters than [a-z0-9.+-] in your packet name. They are not supported within the
ipkg tools.

There are more questions we do not answer here, because they are only used for source archives
from the web. In this example our own sources should be in an existing directory called
/home/jbe/my-packet/ or ./home/jbe/my-packet/. When finished this command creates a
rule file called my packet.make in the current directory. The new rule file doesn’t know anything

Figure 1: A rule and a make file are required to support our own sources.

specific about our development project, yet. It acts as a translator only between the development
requirements and PTXdist’s build mechanism, so it contains ready to use stages until compile. At
least the target-install stage depends on our development requirements and must be modified
manually: We must decide what files should be installed into target’s root filesystem and where to
install them.

To do so we open my packet.make with our favorite editor and navigate to the make target called
$(STATEDIR)/my packet.targetinstall. The first few commands after this make target create
information to be used in the ipkg mechanism.

3

The command we must modify starts with @$(call install copy. At this point of time it is a place-
holder only. It will fail later on if we use it without modification. So we modify it to a line like this:

@$(call install copy, my packet, 0, 0, 0755,
$(MY PACKET DIR)/my executable,
/bin/my executable)

This command will install the fresh built executable my executable as my executable into target’s
root filesystem in the bin/ directory. UID and GID of the file will be both 0 (root) and the permission
will be 0755. It also copies this file into a ipkg called my package.ipk in the image/ directory for later
use.

For each file to be installed we insert a command line here before the line @$(call
install finish,my packet).

The last step is to activate this new rule file by extending active project’s menu. Without this step the
PTXdist’s build environment will ignore it. See chapter ?? how to extend the menu.

Maybe there are special requirements:

• Our development project is a library that installs some binary libraries into target’s root filesystem
and some header files elsewhere to link other applications to this library.

• Our development project is a kernel driver that must share some structures or declarations with
userspace.

To install the binary library into target’s root filesystem the target-install mechanism shown above
should be used. To let other applications include our librarie’s header files, we must follow some rules
to use the correct path to install them. The correct make target to do so is the install stage.

• If the library is intended to be used by other target packets, the binary library and its header files
must be installed intalled into $(SYSROOT)/usr/lib and $(SYSROOT)/usr/include.

• If the library is a host tool or is required to build a host tool we should install our header files and
libraries into $(PTXCONF HOST PREFIX)/include/ and $(PTXCONF HOST PREFIX)/lib/.

• If the library is a cross tool or is required to build a cross tool we should install
our header files and libraries into $(PTXCONF CROSS PREFIX)/include/ and
$(PTXCONF CROSS PREFIX)/lib/.

These are the default locations PTXdist’s build mechanism will instruct the toolchain to search for header
files and libraries we include in a #include <friesel frasel.h> and -lfrieselfrasel man-
ner.

Note:

• Do not install any private header file into toolchain’s directory! Only the active project directory
is the correct location!

• Use always the macros SYSROOT, PTXCONF HOST PREFIX and PTXCONF CROSS PREFIX. They
all point to the active project directory (so we can build our project anywhere we like and move
it around in the filesystem). If we do so, we can change the architecture later on without any
modification in the makefile.

• Due to easyness of changing target’s architecture (remember its only a switch in PTXdist’s menu!),
you always should write architecture independend code.

4

Developing

If all previous steps are successfully done, a pxtdist go will also build the work in progress sources
and installs its results into target’s root filesystem. We can test or debug the results and also rebuild
in the case we fix an error. To make life easier, PTXdist supports this development cycle with a few
commands:

To clean our build results:
$ pxtdist clean my packet
The project makefile will call the development makefile as make clean.

To build our sources only:
$ pxtdist compile my packet
The project makefile will call the development makefile as make without any argument.
If this command doesn’t build anything two things may happend: PTXdist build environment ”knows”
that this command already run successfully. To make it ”forget”, run prior the command
$ ptxdist drop my packet compile.
Another reason could be you didn’t modify any of your sources so all targets are up do date. So it is the
development makefile that decides that nothing is to do. A
$ ptxdist clean my packet
should help in this case.

To install our executables into the target’s root filesystem we run:
$ pxtdist targetinstall my packet
The project makefile won’t call the development makefile in this case, it does the installing itself.

In Case of Trouble

While building the local project ptxdist outputs this error message:

[...]

target: friesel.extract

extract: archive=/fix/path/to/source/friesel
extract: dest=/home/jbe/ptxdist-project/build-target

Unknown format, cannot extract!

In this case the source path was given as:

FRIESEL_URL := file://fix/path/to/source/friesel

This notation uses a relative path and results into ./fix/path/to/source/friesel, which is not
what was intended. To force an absolute path, we must use three slashes:

FRIESEL_URL := file:///fix/path/to/source/friesel

If our sources are part of the project, we can use the relative path notation. If we assume the sources are
at local src/my sources, the path could be given as:

FRIESEL_URL := file://local_src/my_sources

But it would be a good idea to use PTXdist’s macros to ensure everyone can see what the author’s
intention was and where to find the sources:

FRIESEL_URL := file://$(PTXDIST_WORKSPACE)/local_src/my_sources

5

Additional questions?

Below a list of locations where you can get help in case of trouble or questions how to do something
special within PTXdist or general questions about Linux in the embedded world.

Mailing Lists

About PTXdist in special

This is an english language public mailing list for questions about PTXdist. See web site

http://www.pengutronix.de/mailinglists/index en.html

how to subscribe to this list. If you want to search through the mailing list archive, visit

http://www.mail-archive.com/

and search for the list ptxdist.

About embedded Linux in general

This is a german language public mailing list for general questions about Linux in embedded environ-
ments. See web site

http://www.pengutronix.de/mailinglists/index de.html

how to subscribe to this list. Note: You also can send english language mails.

News Groups

About Linux in embedded environments

This is an english language news group for general questions about Linux in embedded environments.

comp.os.linux.embedded

About general Unix/Linux questions

This is a german language news group for general questions about Unix/Linux programming.

de.comp.os.unix.programming

Chat/IRC

About PTXdist in special

irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chat group #ptxdist. This is an
english language group to answer questions about PTXdist. Best time to meet somebody in there is at
europeen daytime.

6

http://www.pengutronix.de/mailinglists/index_en.html
http://www.mail-archive.com/
http://www.pengutronix.de/mailinglists/index_de.html

Miscellaneous

Online Linux Kernel Cross Reference

A powerful cross reference to be used online.

http://lxr.linux.no/blurb.html

U-Boot manual (partially)

Manual how to survive in an embedded environment and how to use the U-Boot on target’s side

http://www.denx.de/wiki/DULG

Commercial Support

You can order immediate support through customer specific mailing lists, by telephone or also on site.
Ask our sales representative for a price quotation for your special requirements.

Contact us at:

Pengutronix
Hannoversche Strasse 2

D-31134 Hildesheim
Germany

Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 9

or by electronic mail:

sales@pengutronix.de

7

http://lxr.linux.no/blurb.html
http://www.denx.de/wiki/DULG

This is a Pengutronix Application Note

Copyright Pengutronix e.K.
All rights reserved.

Pengutronix e.K.
Hannoversche Strasse 2

D-31134 Hildesheim
Germany

Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 9

If you want to contribute to this document
send your suggestions and texts under the
Creative Commons License Attribution 2.0

to jbe@pengutronix.de

